

STER-AL59™

These are homogenous alloy conductors of Aluminium + Magnesium + Silica Alloy type. These conductors have a conductivity of 59% and hence have lesser DC resistance and higher current carrying capacity.

APPLICATION

Al59 alloy conductors are used in power transmission and distribution lines for a wide voltage range (low to ultra-high voltage). These conductors have higher current carrying capacity and lower losses due to DC resistance. Al59 conductors have high corrosion resistance, making them most suited for deployment in coastal regions.

BENEFITS

- 26%-31% more current carrying capacity than ACSR of the same size, while maximum sag remains the same and working tension is lesser than that of ACSR.
- Resistivity is substantially lesser than that of ACSR/AAAC conductors, resulting in lower I²R losses.
- Higher corrosion resistance than 6201 alloy series (AAAC).

TECHNICAL SPECIFICATIONS

PROPERTIES	AL59 (ACSR MOOSE EQUIVALENT)		AL59 (ACSR ZEBRA EQUIVALENT		AL59 (ACSR PANTHER EQUIVALENT)	
Typical factors	3.50 mm	0.1378 in	3.18 mm	0.1252 in	3.00 mm	0.1181 in
Reference specifications	SS 4240814		SS 4240814		SS 4240814	
Total cross section area	587.00 mm ²	0.9099 in ²	484.25 mm ²	0.7506 in ²	261.50 mm ²	0.4053 in ²
Conductive wire	Al59		Al59		Al59	
Core wire	Al59		Al59		Al59	
Conductor diameter	31.50 mm	1.2402 in	28.62 mm	1.1268 in	21.00 mm	0.8268 in
Weight	1618 kg/gm	1087.2 lbs/mile	1336 kg/km	897.8 lbs/mile	720 kg/km	483.8 lbs/mile
Ultimate tensile strength	14350 kg	31636.3 lbs	12340 kg	27205.01 lbs	6661 kgf	14684.97 lbs
DC resistance at 20°C temperature	0.05 Ω/km	0.08 Ω/mile	0.06 Ω/km	0.10 Ω/mile	0.11 Ω/km	0.18 Ω/mile
Maximum operating temperature	95°C	203°F	95°C	203°F	95°C	203°F
Current carrying capacity at maximum operating temperature	1094 Amp		958 Amp		654 Amp	

Assumptions: Ampacity is calculated based on, 45°C (113°F) ambient temperature, 0.6 m/s wind velocity, 0.5 as coefficient of solar absorption, 0.6 as coefficient of emmisivity and 1200 wt/sqm coefficient for solar radiation, at sea level.