

STER-ACCCTM

Sterlite Aluminium Conductor Composite Core (ACCC) conductor consists of a hybrid carbon and glass fiber core which is wrapped with trapezoidal shaped aluminium strands. The high strength structural core carries most of the conductor's mechanical load, while the fully annealed aluminium strands carry all of the conductor's electrical current. ACCC conductor's composite core is much lighter and stronger than conventional or high-strength steel core.

APPLICATION

Ideal for Reconductoring

- Increase capacity while improving line clearance and losses.
- Reduce strain on structures increasing life.

Reduced Line Losses in New Lines

- Under equal load conditions reduces line losses by 30%-40% compared to conductors of the same diameter and weight.
- 100% more capacity building towards future demands.

BENEFITS

- With 28% more annealed aluminium in a trapzoidal configuration the ACCC conductor of the same diameter as ACSR, can double the current (ampacity) rating; Higher operating effciency reduces line losses and associated emissions by more the 35%, resulting in more power delivered and lower power generation costs.
- ACCC conductors use a patented carbon/glass/thermoset resin core that provides height strength and reduces height temperature sag.
- Can re-conductor existing pathway without structural modification and reduce capital expenses on new lines.
- Uses conventional installation methods, tools and mostly conventional hardware. Requires no special tools and limited special training.
- Resists environmental degradation-will not rust, corrode or cause electrolysis with aluminium conductors and components.

TECHNICAL SPECIFICATIONS

PROPERTIES	ACCC HELSINKI		ACCC LISBON	
Typical factors	5.97 mm	0.2355 in	7.11 mm	0.2799 in
Reference specifications	ASTM B857, ASTM B609		ASTM B857, ASTM B609	
Total cross section area	176.11 mm²	0.2730 in ²	358.40 mm²	0.5555 in ²
Conductive wire	1350 O temper Al		1350 0 temper Al	
Core wire	Composite Core		Composite Core	
Conductor diameter	15.65 mm	0.6161 in	21.78 mm	0.8575 in
Weight	455 kg/km	305.7 lbs/mile	957 kg/km	642.8 lbs/mile
Ultimate tensile strength	7036 kg	15511.71 lbs	10574 kg	23311.65 lbs
DC resistance at 20°C temperature	0.19 Ω/km	0.30 Ω/mile	0.09 Ω/km	0.14 Ω/mile
Maximum operating temperature	175°C	347°F	175°C	347°F
Current carrying capacity at maximum operating temperature	710 Amp		1079 Amp	

PROPERTIES	ACCC COPENHAGEN		ACCC DRAKE	
Typical factors	5.97 mm	0.2350 in	9.53 mm	0.3752 in
Reference specifications	ASTM B857, ASTM B609		ASTM B857, ASTM B609	
Total cross section area	246.57 mm²	0.3822 in ²	588.30 mm²	0.9119 in ²
Conductive wire	1350 O temper Al		1350 0 temper Al	
Core wire	Composite Core		Composite Core	
Conductor diameter	18.30 mm	0.7205 in	28.14 mm	1.1079 in
Weight	657 kg/km	441.5 lbs/mile	1558 kg/km	1046.9 lbs/mile
Ultimate tensile strength	7443.9 kg	16410.97 lbs	18691 kg	41206.55 lbs
DC resistance at 20°C temperature	0.13 Ω/km	0.21 Ω/mile	0.06 Ω/km	0.09 Ω/mile
Maximum operating temperature	175°C	347°F	175°C	347°F
Current carrying capacity at maximum operating temperature	858 Amp		1484 Amp	

Assumptions: Ampacity is calculated based on, 45°C (113°F) ambient temperature, 0.6 m/s wind velocity, 0.5 as coefficient of solar absorption, 0.6 as coefficient of emmisivity and 1200 wt/sqm coefficient for solar radiation, at sea level.